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Who Am |
e Microsoft SQL Server database developer, +Delphi, C#, Java (2005-20015)

Go developer (since 2016)
+Build guy/DevOps (since 2020-2021)

Not a Google fan, but | mostly use: Go, Bazel, gRPC, Protobuf, and K8s

Moved to Austin two weeks ago from Ottawa, Canada

Gopher from GoCon Canada 2019



Agenda

e Build process
e Dependencies

e Building a "magic button" with Bazel



Build and dependencies



What is "go build"?

e A command which compiles the packages named by the import paths, along with their
dependencies.

e go build takes a list of *.go files as an argument and produces a executable binary.
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CO m p | | e pa C kageS ain d d e pe N d enc | es (https://pkg.go.dev/crd/go#hdr-Compile_packages_and_dependencies)


https://pkg.go.dev/cmd/go#hdr-Compile_packages_and_dependencies

Do we have all of the *.go files from the beginning?

e // go:.generate <some arbitrary binary or script here>
e make <something>
e shell scripts

o efC.
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gO . ge ne rate P I'o p 0OSa | (https://go.googlesource.com/proposal/+/refs/heads/master/design/go-generate.md)


https://go.googlesource.com/proposal/+/refs/heads/master/design/go-generate.md

Dependencies: part |

e Go packages
e Go compiler

e (Generators



Where do we run our build?

e MacOS/ Linux/ etc.
e amd64 /arm64 / etc.

e |Local machine/ Cl runner/ etc.



Dependencies: part Il

e Host machine is a machine where we run a build
e Target machine is a machine we build software for

e Environment variables



We've built binaries...
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Publishing

e Container images
e tar/zip archives: AWS lambdas
e Kubernetes manifests / Helm charts / CloudFormation templates / etc.

o efC.
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Dependencies: part llI

e Docker

Kustomize / Ytt / Helm / any other templating tool

AWS cli

Make (for some automation of all above)

o efC.
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What is the dependency, btw?
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How do we control our dependencies?

Go packages: go.mod/go.sum.

Go compiler: specific version pre-installed into container image or random Go version on host

machine.

Generators: depends on generator.

Platforms: build flags or running build on a specific platform.
Environment variables: explicitly set during the build.

Docker / Kustomize / Ytt / Helm / AWS cli: do we?
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What else should we consider during the build process?

e |sour build reproducible?
e [s our build well isolated/hermetic? (Hello Docker!).

e When build fails, can we restart from the failure point but not from the beginning?
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The output of the build process aka artifacts

e (GO binaries
e Container images and/or tar/zip archives

e YAML manifests

We're going to build and publish ready-to-deploy artifacts, but not to deploy them.

go build

generator

yaml>"¢ tar/zip Docker
HELM, etc
*
yaml Helm charts
Archlve(s)
etc.

\ / | Artifacts

\/
=

S3 bucket ECR

*




Why "go build" isn't enough?
e go build is just an one step of the build process.

e While what we actually need is a Build orchestration.
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Problem scope
Automate the following process:

e Download and install all necessary dependencies (generators, compilers, tools, etc.)
e Build artifacts.
e Publish artifacts to ECR/S3/ etc.

Other requirements:

e Make a build as isolated as possible.

e Make a build as reproducible as possible, i.e. pin versions of all dependencies.
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Bazel
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Hello Bazel!

e An open-source build and tests tool that uses human-readable, high-level build language to
define build in a declarative way.

e Aimed to build large codebases.
e Supports multi-language and multi-platforms builds

e |t unifies build approaches across multiple languages and multiples toolchains.

¢ Bazel
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Build & cache

e Parallel build: Bazel uses as many cores as it found.

Build can be run on a local or remote machine.

Can build everything from sources including dependencies.

Bazel caches all downloaded dependencies and intermediate build results.

Tracks changes in sources and rebuilds changed parts only.
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Hermeticity & Sandboxing
Hermiticity:

When given the same input source code and product configuration, a hermetic build system
always returns the same output, i.e. hermetic builds are insensitive to libraries and other software
installed on the host machine.

Source identity:

Hermetic build systems try to ensure the sameness of inputs by using checksums to identify
changes to the build's input.

Sandboxing:
Compilers and other tools during the build have an access to explicitly defined inputs only.

ba ZE| . b u | | d/d OCS/Sa N d bOX| ng (https://bazel.build/docs/sandboxing)

bazel.build/basics/hermeticity tupsmazelbuidnasicsnermetiiy) 22


https://bazel.build/docs/sandboxing
https://bazel.build/basics/hermeticity

Let's look at the code
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Hello world generator (main.go)

package main
import "fmt"
func main() {
fmt.Println(’
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")

}

glth u b .CO m/ e kh d ba I’OV/ h el | OoOwWoO I’| d 'ge ne ratO I (https://github.com/ekhabarov/helloworld-generator)
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https://github.com/ekhabarov/helloworld-generator

Hello world generator

% go build -o hw_generator main.go
//go:generate hw_generator > hw.go
% go generate ./...

% cat hw.go
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")
}

% go build -o hello-world hw.go

% ./hello-world
Hello, World!
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And with Bazel

% bazel run //go:hello-world
Hello, World!

e run - Bazel command.

//go:hello-world - label, a unique name for a target.

// - project root.

//go - package.

:hello-world - build target.
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Hello world generator: Bazelified

e MODULE.bazel or WORKSPACE (deprecated) . defines a project root // and may contain external
dependencies.

e BUILD.bazel: defines a package like // or //go. Declares zero or more build targets for the
package.

— BUILD.bazel
— MODULE.bazel

— go
| L— BUILD.bazel
L— go.mod

there is no *.go files in here
G |th u b Re pO (https://github.com/ekhabarov/blog-code-snippets/tree/master/how-to-bazel/genereate-and-compile-go-code)

B | 0] g p 0] St (https://ekhabarov.com/post/how-to-generate-code-with-bazel/) 27
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WORKSPACE (deprecated)

load("@bazel tools//tools/build_defs/repo:http.bz1l", "http_archive")

http_archive(
name = "io_bazel rules_go",
sha256 = "dd926a88a564a9246713a9c00b35315f54chd46b31a26d5d8fb264c07045f05d",
urls = [...],

)
load("@io_bazel rules_go//go:deps.bz1l", "go_register_toolchains", "go_rules_dependencies")
go_rules_dependencies()
go_register_toolchains(version = "1.20.3") # Go version
load("@bazel gazelle//:deps.bzl", "go_repository")
g0_repository(
name = "hw_generator",
importpath = "github.com/ekhabarov/helloworld-generator",

sum = "h1:MrREQgX6I10/4cstUhbuqfALzUF3W2Nz8kVZRg6A4q+E="",
version = "v0.0.1",
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MODULE.bazel

bazel_dep(name
bazel_dep(name

"rules_go", version = "0.59.0")
"gazelle", version = "0.47.0")

go_deps = use_extension("@gazelle//:extensions.bzl", "go_deps")
go_deps.from_file(go_mod = "//:go.mod")

use_repo(go_deps, "com_github_ekhabarov_helloworld generator™)

e bazel dep pulls modules from Bazel Central Registry https.//bcr.bazel.build
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go/BUILD.bazel

e Rule: A function implementation. It takes an input and produces an output.

e Target: A buildable unit.

load("@io_bazel rules_go//go:def.bz1l", "go_binary", "go_library")

genrule(
name = "generate_hello_go",
outs = ["hello.go"],
cmd = "$(execpath @hw_generator//:helloworld-generator) > $@",
tools = ["@hw_generator//:helloworld-generator"],

)

go_library(
name = "hello-world lib",
srcs ["hello.go"],
importpath = "github.com/ekhabarov/helloworld-generator",

)

go_binary(
name = "hello-world",
embed = [":hello-world 1ib"],
importpath = "github.com/ekhabarov/helloworld-generator",



Build & run

bazel run //go:hello-world

|
| --> bazel build //go:hello-world

|
| --> bazel build //go:hello-world_lib

|
| --> bazel build //go:generate_hello_go

=>

=>

=>

=>

runs hello-world binary
creates hello-world binary
creates hello-world.a

creates hello.go
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Demo: Microservices, Kubernetes and Tilt

Kubernetes cluster

@ @gRPC :5000
service-one-77677bfdd9-ringr service-one
O &
envoy-68596b8c96-zjnlz  envoy
@ @gnpc :5000

authz-685bccdd58-wbdgb authz

gRPC :8080 HTTP

e build two gRPC services
e build Docker images for the services, and for Evhoy proxy

e deploy all into local k8s cluster (minikube)

e k h d b alrov.co m/ e nvoy (https://ekhabarov.com/envoy)
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https://ekhabarov.com/envoy

Labels

Common format

% bazel (build | test | run) //path/to/package:target

Build everything in a workspace
% bazel build //...

or

% bazel build //:all

Build everything in package "abc" recursively
% bazel build //abc/...

or

% bazel build //abc/:all

Build external dependency
% bazel build @hw_generator//...

Build one target
% bazel build //go:hello-world

Run one target
% bazel run //go:hello-world
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Should we write BUILD files manually?
Partially, thanks to Gazelle, which:

e Generates BUILD files
e Keeps them up to date
e Formats BUILD files

e Manages dependencies
Manually added targets:

e Container images
e YAML manifests
e Publishing artifacts

34



What else?
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Bazel query
Some questions that query answers:

e What packages use package or tool X?

e Which dependencies package X has?

e What files are generated foo package?

e What rule target(s) contain file path/to/file.go as a source?

e Where a transitive dependency came from?

Ba e | Q ue I’y H OW‘TO (https://docs.bazel build/versions/main/query-how-to.htmi)
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https://docs.bazel.build/versions/main/query-how-to.html

Dependency graph

f:image
/ I \
(@distroless_base//:distroless_base if:app_layer /f:_image write_entrypoint

] N

/:app @rules_pkg//pkg/private:private_stamp_detect @hazel_tools/

‘conditions:host_windows

v

conditions:host_windows_arm64_constraint
c/conditions:host_windows x64 constraint

A J

(@wbazel_too.

/{:cbx-example-golang_lib @hazel tool

RN

/f:main.go (@com_github_google uuid//:umd

Y
@com_github_google_uuid//:time.go
{@com_github_google uuid//:versiond.go
@com_github_google_uuid//:marshal.go
@com_github_google_uuid//:node_net.go
@com_github_google uuid//:versionl.go
@ecom_github_google uuid/:null.go
@com_github_google uuid/:uuid.go
@com_github_google uuid/:util.go
(@com_github_google uuid//:dee.go
@eom_github_google uuid//:hash.go

(@eom_github_google_uuid//:
...and 1 more items

$ bazel query --noimplicit_deps 'deps(//:image)' --output graph | grep -v ... > graph.in
$ dot -Tpng < graph.in > graph.png



Extensibility

e Ruleset; An extension for Bazel.

Available rules:

e rules_go

e gazelle

e rules_oci

e rules_proto
e rules_ytt

o etC.

baZE| . b u | | d (https://bazel.build)
bC I ba e | . b u | | d (https://bcr.bazel build)

awesome ba e | .Com (https://awesomebazel.com)
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When to use Bazel

e With relatively large (mono)repos

Many languages

Multi-step build process

Bazel solves more issues than it creates

Hermeticity and reproducibility are mandatory

Build takes a lot of time
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Just one more thing

“Just one more thing.”
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Thank you
Eugene Khabarov

httpS/ / e kh d ba Fov.cCOm (https://ekhabarov.com)
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