When "go build" isn't enough:
Introduction to Bazel

Jan 14, 2026

Eugene Khabarov

Who Am |
e Microsoft SQL Server database developer, +Delphi, C#, Java (2005-20015)

Go developer (since 2016)
+Build guy/DevOps (since 2020-2021)

Not a Google fan, but | mostly use: Go, Bazel, gRPC, Protobuf, and K8s

Moved to Austin two weeks ago from Ottawa, Canada

Gopher from GoCon Canada 2019

Agenda

e Build process
e Dependencies

e Building a "magic button" with Bazel

Build and dependencies

What is "go build"?

e A command which compiles the packages named by the import paths, along with their
dependencies.

e go build takes a list of *.go files as an argument and produces a executable binary.

[*.80

iy
[*.80 {executable}
4

{ * g0 } go build

CO m p | | e pa C kageS ain d d e pe N d enc | es (https://pkg.go.dev/crd/go#hdr-Compile_packages_and_dependencies)

https://pkg.go.dev/cmd/go#hdr-Compile_packages_and_dependencies

Do we have all of the *.go files from the beginning?

e // go:.generate <some arbitrary binary or script here>
e make <something>
e shell scripts

o efC.

g ﬁ._{emcuwb.q

—)[generated.go] g0 build

generator

gO . ge ne rate P I'o p 0OSa | (https://go.googlesource.com/proposal/+/refs/heads/master/design/go-generate.md)

https://go.googlesource.com/proposal/+/refs/heads/master/design/go-generate.md

Dependencies: part |

e Go packages
e Go compiler

e (Generators

Where do we run our build?

e MacOS/ Linux/ etc.
e amd64 /arm64 / etc.

e |Local machine/ Cl runner/ etc.

Dependencies: part Il

e Host machine is a machine where we run a build
e Target machine is a machine we build software for

e Environment variables

We've built binaries...

“{ £ | \WEVEBUILT BINARIES/
[!

LIty
‘hr
W

E

, j',ri

£ 4

& A
Y ;P I'J

 NOWWHAT? \

Publishing

e Container images
e tar/zip archives: AWS lambdas
e Kubernetes manifests / Helm charts / CloudFormation templates / etc.

o efC.

11

Dependencies: part llI

e Docker

Kustomize / Ytt / Helm / any other templating tool

AWS cli

Make (for some automation of all above)

o efC.

12

What is the dependency, btw?

TECHNICALLY, EVERYTHING),
INVOLVED INTO A BUILD I'IIIIBESS

oy 173

4
G,
“IS A DEPENDENCY

13

How do we control our dependencies?

Go packages: go.mod/go.sum.

Go compiler: specific version pre-installed into container image or random Go version on host

machine.

Generators: depends on generator.

Platforms: build flags or running build on a specific platform.
Environment variables: explicitly set during the build.

Docker / Kustomize / Ytt / Helm / AWS cli: do we?

14

What else should we consider during the build process?

e |sour build reproducible?
e [s our build well isolated/hermetic? (Hello Docker!).

e When build fails, can we restart from the failure point but not from the beginning?

15

The output of the build process aka artifacts

e (GO binaries
e Container images and/or tar/zip archives

e YAML manifests

We're going to build and publish ready-to-deploy artifacts, but not to deploy them.

go build

generator

yaml>"¢ tar/zip Docker
HELM, etc
*
yaml Helm charts
Archlve(s)
etc.

\ / | Artifacts

\/
=

S3 bucket ECR

*

Why "go build" isn't enough?
e go build is just an one step of the build process.

e While what we actually need is a Build orchestration.

17

Problem scope
Automate the following process:

e Download and install all necessary dependencies (generators, compilers, tools, etc.)
e Build artifacts.
e Publish artifacts to ECR/S3/ etc.

Other requirements:

e Make a build as isolated as possible.

e Make a build as reproducible as possible, i.e. pin versions of all dependencies.

18

Bazel

19

Hello Bazel!

e An open-source build and tests tool that uses human-readable, high-level build language to
define build in a declarative way.

e Aimed to build large codebases.
e Supports multi-language and multi-platforms builds

e |t unifies build approaches across multiple languages and multiples toolchains.

¢ Bazel

20

Build & cache

e Parallel build: Bazel uses as many cores as it found.

Build can be run on a local or remote machine.

Can build everything from sources including dependencies.

Bazel caches all downloaded dependencies and intermediate build results.

Tracks changes in sources and rebuilds changed parts only.

21

Hermeticity & Sandboxing
Hermiticity:

When given the same input source code and product configuration, a hermetic build system
always returns the same output, i.e. hermetic builds are insensitive to libraries and other software
installed on the host machine.

Source identity:

Hermetic build systems try to ensure the sameness of inputs by using checksums to identify
changes to the build's input.

Sandboxing:
Compilers and other tools during the build have an access to explicitly defined inputs only.

ba ZE| . b u | | d/d OCS/Sa N d bOX| ng (https://bazel.build/docs/sandboxing)

bazel.build/basics/hermeticity tupsmazelbuidnasicsnermetiiy) 22

https://bazel.build/docs/sandboxing
https://bazel.build/basics/hermeticity

Let's look at the code

23

Hello world generator (main.go)

package main
import "fmt"
func main() {
fmt.Println(’
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")

}

glth u b .CO m/ e kh d ba I’OV/ h el | OoOwWoO I’| d 'ge ne ratO I (https://github.com/ekhabarov/helloworld-generator)

24

https://github.com/ekhabarov/helloworld-generator

Hello world generator

% go build -o hw_generator main.go
//go:generate hw_generator > hw.go
% go generate ./...

% cat hw.go
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")
}

% go build -o hello-world hw.go

% ./hello-world
Hello, World!

25

And with Bazel

% bazel run //go:hello-world
Hello, World!

e run - Bazel command.

//go:hello-world - label, a unique name for a target.

// - project root.

//go - package.

:hello-world - build target.

26

Hello world generator: Bazelified

e MODULE.bazel or WORKSPACE (deprecated) . defines a project root // and may contain external
dependencies.

e BUILD.bazel: defines a package like // or //go. Declares zero or more build targets for the
package.

— BUILD.bazel
— MODULE.bazel

— go
| L— BUILD.bazel
L— go.mod

there is no *.go files in here
G |th u b Re pO (https://github.com/ekhabarov/blog-code-snippets/tree/master/how-to-bazel/genereate-and-compile-go-code)

B | 0] g p 0] St (https://ekhabarov.com/post/how-to-generate-code-with-bazel/) 27

https://github.com/ekhabarov/blog-code-snippets/tree/master/how-to-bazel/genereate-and-compile-go-code
https://ekhabarov.com/post/how-to-generate-code-with-bazel/

WORKSPACE (deprecated)

load("@bazel tools//tools/build_defs/repo:http.bz1l", "http_archive")

http_archive(
name = "io_bazel rules_go",
sha256 = "dd926a88a564a9246713a9c00b35315f54chd46b31a26d5d8fb264c07045f05d",
urls = [...],

)
load("@io_bazel rules_go//go:deps.bz1l", "go_register_toolchains", "go_rules_dependencies")
go_rules_dependencies()
go_register_toolchains(version = "1.20.3") # Go version
load("@bazel gazelle//:deps.bzl", "go_repository")
g0_repository(
name = "hw_generator",
importpath = "github.com/ekhabarov/helloworld-generator",

sum = "h1:MrREQgX6I10/4cstUhbuqfALzUF3W2Nz8kVZRg6A4q+E="",
version = "v0.0.1",

28

MODULE.bazel

bazel_dep(name
bazel_dep(name

"rules_go", version = "0.59.0")
"gazelle", version = "0.47.0")

go_deps = use_extension("@gazelle//:extensions.bzl", "go_deps")
go_deps.from_file(go_mod = "//:go.mod")

use_repo(go_deps, "com_github_ekhabarov_helloworld generator™)

e bazel dep pulls modules from Bazel Central Registry https.//bcr.bazel.build

29

go/BUILD.bazel

e Rule: A function implementation. It takes an input and produces an output.

e Target: A buildable unit.

load("@io_bazel rules_go//go:def.bz1l", "go_binary", "go_library")

genrule(
name = "generate_hello_go",
outs = ["hello.go"],
cmd = "$(execpath @hw_generator//:helloworld-generator) > $@",
tools = ["@hw_generator//:helloworld-generator"],

)

go_library(
name = "hello-world lib",
srcs ["hello.go"],
importpath = "github.com/ekhabarov/helloworld-generator",

)

go_binary(
name = "hello-world",
embed = [":hello-world 1ib"],
importpath = "github.com/ekhabarov/helloworld-generator",

Build & run

bazel run //go:hello-world

|
| --> bazel build //go:hello-world

|
| --> bazel build //go:hello-world_lib

|
| --> bazel build //go:generate_hello_go

=>

=>

=>

=>

runs hello-world binary
creates hello-world binary
creates hello-world.a

creates hello.go

31

Demo: Microservices, Kubernetes and Tilt

Kubernetes cluster

@ @gRPC :5000
service-one-77677bfdd9-ringr service-one
O &
envoy-68596b8c96-zjnlz envoy
@ @gnpc :5000

authz-685bccdd58-wbdgb authz

gRPC :8080 HTTP

e build two gRPC services
e build Docker images for the services, and for Evhoy proxy

e deploy all into local k8s cluster (minikube)

e k h d b alrov.co m/ e nvoy (https://ekhabarov.com/envoy)

32

https://ekhabarov.com/envoy

Labels

Common format

% bazel (build | test | run) //path/to/package:target

Build everything in a workspace
% bazel build //...

or

% bazel build //:all

Build everything in package "abc" recursively
% bazel build //abc/...

or

% bazel build //abc/:all

Build external dependency
% bazel build @hw_generator//...

Build one target
% bazel build //go:hello-world

Run one target
% bazel run //go:hello-world

33

Should we write BUILD files manually?
Partially, thanks to Gazelle, which:

e Generates BUILD files
e Keeps them up to date
e Formats BUILD files

e Manages dependencies
Manually added targets:

e Container images
e YAML manifests
e Publishing artifacts

34

What else?

35

Bazel query
Some questions that query answers:

e What packages use package or tool X?

e Which dependencies package X has?

e What files are generated foo package?

e What rule target(s) contain file path/to/file.go as a source?

e Where a transitive dependency came from?

Ba e | Q ue I’y H OW‘TO (https://docs.bazel build/versions/main/query-how-to.htmi)

36

https://docs.bazel.build/versions/main/query-how-to.html

Dependency graph

f:image
/ I \
(@distroless_base//:distroless_base if:app_layer /f:_image write_entrypoint

] N

/:app @rules_pkg//pkg/private:private_stamp_detect @hazel_tools/

‘conditions:host_windows

v

conditions:host_windows_arm64_constraint
c/conditions:host_windows x64 constraint

A J

(@wbazel_too.

/{:cbx-example-golang_lib @hazel tool

RN

/f:main.go (@com_github_google uuid//:umd

Y
@com_github_google_uuid//:time.go
{@com_github_google uuid//:versiond.go
@com_github_google_uuid//:marshal.go
@com_github_google_uuid//:node_net.go
@com_github_google uuid//:versionl.go
@ecom_github_google uuid/:null.go
@com_github_google uuid/:uuid.go
@com_github_google uuid/:util.go
(@com_github_google uuid//:dee.go
@eom_github_google uuid//:hash.go

(@eom_github_google_uuid//:
...and 1 more items

$ bazel query --noimplicit_deps 'deps(//:image)' --output graph | grep -v ... > graph.in
$ dot -Tpng < graph.in > graph.png

Extensibility

e Ruleset; An extension for Bazel.

Available rules:

e rules_go

e gazelle

e rules_oci

e rules_proto
e rules_ytt

o etC.

baZE| . b u | | d (https://bazel.build)
bC I ba e | . b u | | d (https://bcr.bazel build)

awesome ba e | .Com (https://awesomebazel.com)

38

https://bazel.build/
https://bcr.bazel.build/
https://awesomebazel.com/

When to use Bazel

e With relatively large (mono)repos

Many languages

Multi-step build process

Bazel solves more issues than it creates

Hermeticity and reproducibility are mandatory

Build takes a lot of time

39

Just one more thing

“Just one more thing.”

40

Thank you
Eugene Khabarov

httpS/ / e kh d ba Fov.cCOm (https://ekhabarov.com)

https://ekhabarov.com/

